THE ARF AND SATO LINK CONCORDANCE INVARIANTS

RACHEL STURM BEISS

ABSTRACT. The Kervaire-Arf invariant is a Z/2 valued concordance invariant of knots and proper links. The β invariant (or Sato's invariant) is a Z valued concordance invariant of two component links of linking number zero discovered by J. Levine and studied by Sato, Cochran, and Daniel Ruberman. Cochran has found a sequence of invariants $\{\beta_i\}$ associated with a two component link of linking number zero where each β_i is a Z valued concordance invariant and $\beta_0 = \beta$. In this paper we demonstrate a formula for the Arf invariant of a two component link $L = X \cup Y$ of linking number zero in terms of the β invariant of the link:

$$arf(X \cup Y) = arf(X) + arf(Y) + \beta(X \cup Y) \pmod{2}$$
.

This leads to the result that the Arf invariant of a link of linking number zero is independent of the orientation of the link's components. We then establish a formula for $|\beta|$ in terms of the link's Alexander polynomial $\Delta(x, y) = (x-1)(y-1)f(x, y)$:

$$|\beta(L)| = |f(1, 1)|.$$

Finally we find a relationship between the β_i invariants and linking numbers of lifts of X and Y in a $\mathbb{Z}/2$ cover of the compliment of $X \cup Y$.

1. Introduction

The Kervaire-Arf invariant [KM, R] is a Z/2 valued concordance invariant of knots and proper links. The β invariant (or Sato's invariant) is a Z valued concordance invariant of two component links of linking number zero discovered by Levine (unpublished) and studied by Sato [S], Cochran [C], and Daniel Ruberman. Cochran [C] has found a sequence of invariants $\{\beta_i\}$ associated with a two component link of linking number zero where each β_i is a Z valued concordance invariant and $\beta_0 = \beta$. 23 Theorem 1 demonstrates a formula for the Arf invariant of a two component link $L = X \cup Y$ of linking number zero in terms of the β invariant of the link:

Theorem 1.
$$arf(X \cup Y) = arf(X) + arf(Y) + \beta(X \cup Y) \pmod{2}$$
.

This leads to the result that the Arf invariant of a link of linking number zero is independent of the orientation of the link's components. In Theorem 2 we establish a formula for $|\beta|$ in terms of the link's Alexander polynomial $\Delta(x, y) = (x - 1)(y - 1)f(x, y)$.

Received by the editors December 1, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 57M25.

Theorem 2. $|\beta(L)| = |f(1, 1)|$.

Finally, in Theorem 3 we find a relationship between the invariants and linking numbers of lifts of X and Y in a Z/2 cover of the compliment of $X \cup Y$:

Theorem 3.
$$-\frac{1}{2} \operatorname{lk}(Y^0, Y^1) = \sum_{j=0}^{N-1} 4^j \beta_j(L) - 2(4)^{N-1} \operatorname{lk}(c_N^0, c_N^1)$$
.

Acknowledgment. This paper is based on my thesis prepared at the Courant Institute of Mathematical Sciences. I would like to thank Professor Sylvain Cappell, my advisor, for much help and encouragement and Daniel Ruberman for many helpful discussions.

We will begin by recalling a few definitions.

Let V be a vector space of dimension 2n over $\mathbb{Z}/2$. Let $\varphi \colon V \times V \to \mathbb{Z}/2$ be a nonsingular symmetric bilinear form such that $\varphi(a,a)=0$ for every a in V. The map $q \colon V \to \mathbb{Z}/2$ is a quadratic form with respect to φ if and only if

$$q(a+b) = q(a) + q(b) + \varphi(a, b)$$
 for every a, b in V .

Definition 1.1. The set $\{a_1, b_1, \dots, a_n, b_n\}$ is a symplectic basis of V with respect to φ if it is a basis of V and if $\varphi(a_i, b_j) = \delta_{ij}$ and $\varphi(a_i, a_j)$ $\varphi(b_i, b_j) = 0$.

Definition 1.2 (Arf invariant of a quadratic form). Let $\{a_1, b_1, \ldots, a_n, b_n\}$ be a symplectic basis of V with respect to φ . Then

$$\operatorname{arf}(q) = \sum_{i=1}^{n} q(a_i) q(b_i)$$

is the Arf invariant of q.

The above definition is independent of the choice of symplectic basis (see Arf [A]).

Let K be a knot in S^3 and M an oriented Seifert surface spanning K. Then $H_1(M; \mathbb{Z}/2)$ is a vector field over $\mathbb{Z}/2$ of dimension 2q where q = genus of M. We have a symmetric nonsingular bilinear form

int₂:
$$H_1(M; \mathbb{Z}/2) \times H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2$$

defined by $\operatorname{int}_2(\underline{a}, \underline{b}) = \operatorname{the mod } 2$ intersection number of cycles a, b which represent \underline{a} and \underline{b} . Since M is orientable, $\operatorname{int}_2(\underline{a}, \underline{a}) = 0$ for every \underline{a} in $H_1(M; \mathbb{Z}/2)$.

From now on we will assume we have fixed an orientation of S^3 . Since M and S^3 are now oriented we can distinguish between the positive and negative normal directions to M.

Given \underline{a} , an element of $H_1(M)$, let a be a curve in M which represents \underline{a} and a^+ , a^- the push offs of a in the positive and negative normal directions to M. Define $\delta_2 \colon H_1(M; \mathbb{Z}/2) \to \mathbb{Z}/2$ by $\delta_2(\underline{a}) = \operatorname{lk}(a, a^+) \mod 2$ the modulo

two linking number between a and a^+ . We have

$$\delta_2(\underline{a} + \underline{b}) = \delta_2(\underline{a}) + \delta_2(\underline{b}) + \operatorname{int}_2(\underline{a}, \underline{b})$$

[KM], so δ_2 is a quadratic form associated with int₂.

Definition 1.3 (Arf invariant of a knot). The Arf invariant of a knot K is equal to the Arf invariant of the quadratic form δ_2 .

Let $L = X \cup Y$ be a two component link with even linking number in S^3 whose components X and Y are oriented. Let M be a connected Seifert surface for L. Then $H_1(M; \mathbb{Z}/2)$ is a vector space over $\mathbb{Z}/2$ of dimension 2g+1 where g= genus of M. The modulo two intersection form is nonsingular on the quotient space of $H_1(M; \mathbb{Z}/2)$ given by $H_1(M; \mathbb{Z}/2)/J$, where J is a one-dimensional subspace generated by one boundary component of M.

Definition 1.4 (Arf invariant of a link). The Arf invariant of link L is equal to the Arf invariant of the quadratic form δ_2 restricted to the quotient space $H_1(M; \mathbb{Z}/2)/J$ of $H_1(M; \mathbb{Z}/2)$.

The above definition is well defined for links of even linking number [R].

If $L = X \cup Y$ has linking number zero then there exist Seifert surfaces M_x , M_y for X and Y such that $X \cap M_Y = Y \cap M_x = \emptyset$. Therefore $M_x \cap M_y = C_1 \cup C_2 \cup \cdots \cup C_n$ where C_j is a circle embedded in M_x and M_y . Orient C_j so that a positive unit tangent to C_j together with the positive unit normals to M_x and M_y give the chosen orientation of S^3 .

The intersection $M_x \cap M_y$ has a natural framing of its normal bundle given by the normal 1-fields (\vec{v}, \vec{w}) . By the Thom-Pontryagin construction $(M_x \cap M_y, \vec{v}, \vec{w})$ corresponds to an element of $\Pi_3(S^2)$.

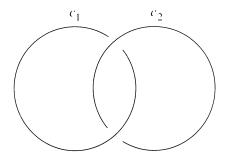
Definition 1.5 (the β or Sato invariant). $\beta(L)$ is the element of $\Pi_3(S^2)$ given by $(M_x \cap M_v, \vec{v}, \vec{w})$.

Alternate definition to 1.5a (the β or Sato invariant).

$$\beta(L) = 2\sum_{i < j} \text{lk}(C_i, C_j) + \sum_{j=1}^{n} \text{lk}(C_j, C_j^+)$$

where lk(a, b) is the linking number between a and b with respect to the chosen orientation of S^3 .

Definitions 1.5 and 1.5a are obviously the same if $M_x \cap M_y$ is connected. In Lemma 2.1 we show that if $M_x \cap M_y$ has two or more components then M_x and M_y can be altered so that the altered surfaces intersect in a connected manifold. Figure 1.1 illustrates how the definitions are the same when $M_x \cap M_y = c_1 \cup c_2$ has two components and M_x , M_y are altered so that the new intersection c is connected.



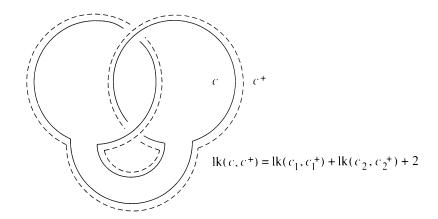


Figure 1.1

2. A relationship between the β and Arf invariants

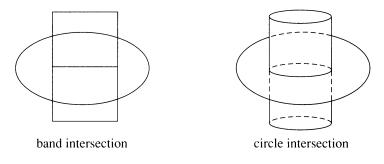
In this section we establish a relationship between the β invariant and the Arf invariant of a link of linking number zero.

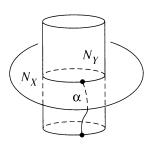
Theorem 1. If $L = X \cup Y$ is an oriented link of linking number zero then $arf(L) = arf(X) + arf(Y) + \beta(L) \pmod{2}$.

First we will find two oriented Seifert surfaces M_X , M_Y for X, Y respectively such that $M_X \cap M_Y$ consists of only one circle. We cut M_X and M_Y along this circle and reglue to obtain an oriented Seifert surface M for L. Surface M will be used to compute $\operatorname{arf}(L)$.

Lemma 2.1. Let $L = X \cup Y$ be a link of linking number zero. There exist orientable Seifert surfaces M_X and M_Y spanning X and Y such that $M_X \cap M_Y = \emptyset$ or one circle. Furthermore this circle is not null homologous in $H_1(M_X)$ of $H_1(M_Y)$.

Proof. Let N_X , N_Y be oriented Seifert surfaces for X and Y such that $N_X \cap N_Y = \{c_1, \ldots, c_n\}$, where each c_j is an embedded circle. Change circle inter-





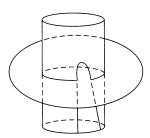


FIGURE 2.1

sections c_1 and c_2 to band intersections by the following method of Cooper [Co]. Let α_1 , α_2 be paths from ∂N_Y to points on c_1 and c_2 respectively. Push N_Y in along α_1 and α_2 so c_1 and c_2 become band intersections (see Figure 2.1). Let p_1 and p_2 be two points on the resulting band intersections. Let γ be an arc in N_X from p_1 to p_2 and oriented from p_1 to p_2 such that the intersection number of γ with N_Y at p_1 is +1 and the intersection number of γ with N_X at p_2 is -1 (see Figure 2.2(ii)). Now attach a handle to N_Y whose core coincides with γ (see Figure 2.2(ii)). Our two band intersections have been transformed into two different band intersections. If we attach two handles to N_X whose cores coincide with the two arcs in $\partial N_Y = Y$ which were pushed in along paths α_1 and α_2 then the band intersections will become one circle intersection (see Figure 2.2(iii)).

Let us call our new surfaces N_X' and N_Y' . These new surfaces intersect in $N_X' \cap N_Y' = \{a, c_3, \ldots, c_n\}$, where a was formed from c_1 and c_2 . If we repeat the above process we can find oriented surfaces M_X and M_Y such that $M_Y \cap M_Y =$ one circle c.

Suppose $M_X \cap M_Y = c$ and c is null homologous in $H_1(M_X)$. Then c bounds a surface N in M_X . Look at a neighborhood of N in S^3 parametrized by $N \times [1, -1]$, where $N \times 0$ coincides with N. Replace M_X with $M_X - N \cup \partial N \times [1, 0] \cup N \times 1$. Now round off the corner at $N \times 0$ and we will no longer have an intersection along c. \square

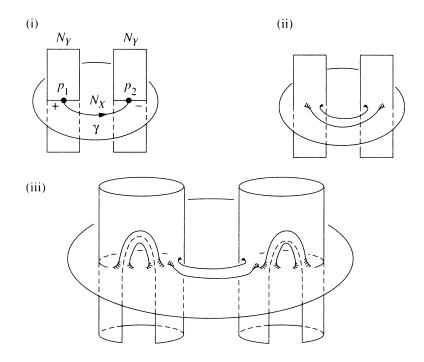


FIGURE 2.2

Proof of Theorem 1. By Lemma 2.1 we can assume we have oriented Seifert surfaces M_X and M_Y for X, Y respectively such that $M_X \cap M_Y = \emptyset$ or $M_X \cap M_Y = c$, where c is an embedded circle and c not homologous to zero in $H_1(M_X)$ or $H_1(M_Y)$.

If $M_X \cap M_Y = \emptyset$ then L is a boundary link. From the methods of Robertello [R] it easily follows that arf(L) = arf(X) + arf(Y). Since the β invariant for a boundary link is zero the formula holds in this case.

Assume that $M_X \cap M_Y = c$. We can find symplectic bases :

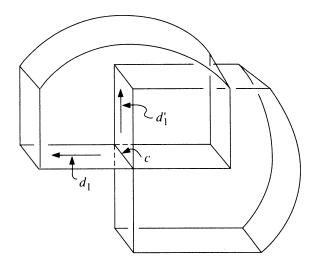
$$\{\underline{c}, \underline{d}_1, \underline{c}_2, \underline{d}_2, \dots, \underline{c}_g, \underline{d}_g\}, \{\underline{c}, \underline{d}'_1, \underline{e}_2, \underline{f}_2, \dots, \underline{e}_h, \underline{f}_h\}$$

for $H_1(M_X; Z/2)$ and $H_1(M_Y; Z/2)$ respectively, where $g = \text{genus } M_X$ and $h = \text{genus } M_Y$, and c represents \underline{c} .

We now construct M, an oriented Seifert surface for L, from M_X and M_Y . Cut M_X and M_Y along c. Attach $M_X - c$ to $M_Y - c$ so that the positive sides of $M_X - c$ and $M_Y - c$ form the positive side of M. M is orientable. Let $H_1(M; \mathbb{Z}/2) = I \oplus J$, where J = the null space of form int₂ and I is the subspace with symplectic basis:

$$\{\underline{c}, \underline{d}, \underline{c}_2, \underline{d}_2, \dots, \underline{c}_g, \underline{d}_g, \underline{e}_2, \underline{f}_2, \dots, \underline{e}_h, \underline{f}_h\}$$

where $d=d_1\cup d_1'$ represents \underline{d} . The self-linking numbers of the basis element of I have not changed with the exception of \underline{d} : $\delta_2(\underline{d})=\delta_2(\underline{d}_1)+\delta_2(\underline{d}_1')+1$.



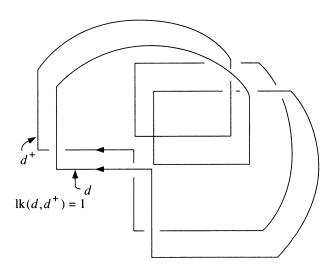


FIGURE 2.3

The extra 1 appears because \underline{d}_1 and \underline{d}'_1 intersects at a point. Figure 2.3 is a local picture of $M_X \cup M_Y$ near d_1 and d'_1 and shows how the extra linking number appears.

Use the above symplectic basis of I to calculate arf(L):

$$\begin{split} \operatorname{arf}(L) &\equiv \delta_2(\underline{c}) \delta_2(\underline{d}) + \sum_{j=2}^g \delta_2(c_j) \delta_2(\underline{d}_j) + \sum_{j=2}^h \delta_2(\underline{e}_j) \delta_2(\underline{f}_j) \\ &\equiv \delta_2(\underline{c}) (\delta_2(\underline{d}_1) + \delta_2(\underline{d}_1') + 1) \\ &\quad + \sum_{j=2}^g \delta_2(\underline{c}_j) \delta_2(\underline{d}_j) + \sum_{j=2}^h \delta_2(\underline{e}_j) \delta_2(\underline{f}_j) \\ &\equiv \delta_2(\underline{c}) + \operatorname{arf}(X) + \operatorname{arf}(Y) \mod 2 \end{split}$$

and $\delta_2(\underline{c}) \equiv \beta(L) \pmod{2}$ so,

$$arf(L) \equiv arf(X) + arf(Y) + \beta(L) \pmod{2}$$
. \square

Corollary 1. The Arf invariant of a link of linking number zero is independent of the orientation of the components of the link.

Proof. We must show that $\beta(L) \pmod{2}$ is independent of the link's orientation.

Definition 1.5 for $\beta(L)$ shows

$$\begin{split} \beta(L) &= 2 \sum_{i < j} \mathrm{lk}(c_i \,,\, c_j) L + \sum_{j=1}^{2p} \mathrm{lk}(c_j \,,\, c_j^+) \\ &\equiv \sum_{j=1}^{2p} \mathrm{lk}(c_j \,,\, c_j^+) \pmod{2} \,. \end{split}$$

Each term $lk(c_j, c_j^+)$ is independent of the orientation of the components of the link. \square

3. A formula for $|\beta(L)|$ in terms of the Alexander polynomial of L

In this section we establish a relationship between the $\underline{\beta}$ invariant of a link and its Alexander polynomial $\Delta(x, y)$. If $L = X \cup Y$ is a link of linking number zero then it has an Alexander polynomial of the form

$$\Delta(x, y) = (x - 1)(y - 1)f(x, y).$$

Theorem 2. $|\beta(L)| = |f(1, 1)|^{1}$

We compute $\Delta(x, y)$ using an algorithm by Cooper [Co] which is summarized in the following paragraph:

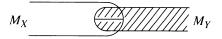
Let $L = X \cup Y$ be an oriented link in S^3 and M_X , M_Y Seifert surfaces with orientations inherited from those of X and Y such that $M_X \cap M_Y$ consists of only clasp intersections (see Figure 3.1(i)). Cooper defines two bilinear forms

$$u\,,\,v\colon H_1(M_X\cup M_Y)\times H_1(M_X\cup M_Y)\to Z$$

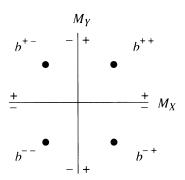
by $u(\underline{a}, \underline{b}) = lk(a, b^{--})$ and $v(\underline{a}, \underline{b}) = lk(a, b^{-+})$, where a, b are curves in M_X and M_Y respectively which represent \underline{a} and \underline{b} . The notation $lk(a, b^{--})$ stands for the linking number between a and b^{--} where b^{--} is the push off of b in the negative normal direction to M_X and negative normal direction to M_Y . Similarly $lk(a, b^{-+})$ is the linking number between a and the push off of b in the negative normal direction to M_X and positive normal direction to M_Y . When a or b passes from M_X to M_Y it must contain the clasp intersection. Near a clasp the push off of a curve will lie in one of the four quadrants formed by the clasp intersection as suggested in Figure 3.1(ii). Cooper observed that

¹The quantity |f(1, 1)| is equal to $|a_1|$, where a_1 is a Conway polynomial coefficient. In [C] the Conway polynomial coefficients are found to be related to Milnor's μ -invariants and to certain linking numbers.

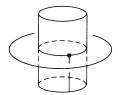
(i) A clasp intersection

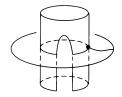


(ii)



(iii) Changing a circle intersection to two clasps





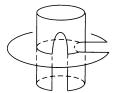


FIGURE 3.1

$$H_1(M_X \cup M_Y) \cong H_1(M_X) \oplus H_1(M_Y) \oplus \widehat{H}_0(M_X \cap M_Y) \,.$$

Loops circling through the clasps form a basis for the component of $H_1(M_X \cup M_Y)$ isomorphic to $\widehat{H}_0(M_X \cap M_Y)$. Let A, B be matrices representing u and v respectively. Cooper shows that

$$\Delta(x, y) = (x - 1)^{-2g} (y - 1)^{-2h} \det(xyA + A^T - xB - yB^T),$$

where $g = \text{genus of } M_{\chi} \text{ and } h = \text{genus of } M_{\nu}$.

Proof of Theorem 2. By Lemma 2.1 we can assume that we have oriented Seifert surfaces N_X' and N_Y' for X and Y such that $N_X' \cap N_Y'$ is a single circle. The circle intersection can be changed as in [Co] to two clasp intersections (see Figure 3.1(iii)). Let N_X , N_Y be the resulting Seifert surfaces for X and Y such that $N_X \cap N_Y$ is two clasps. If $N_X' \cap N_Y' = c$ then the invariant of L,

eta(L), is by definition equal to $\mathrm{lk}(c\,,\,c^{--})=\mathrm{lk}(c\,,\,c^{-+})$. Let us choose a basis of $H_1(N_X\cup N_Y)$ consisting of a basis for $H_1(N_X)$ union a basis for $H_1(N_Y)$ union \underline{c} where c runs through the two clasps as above and represents \underline{c} . Notice that if curve b lies in M_X then $u(\underline{a}\,,\,\underline{b})=v(\underline{a}\,,\,\underline{b})=\mathrm{lk}(a\,,\,b^-)$ where b^- is the push off of b in the negative normal direction to M_X . If $A_X=A$ restricted to $H_1(N_X)$ and $B_X=B$ restricted to $H_1(N_X)$ then $A_X=B_X$. Similarly if $A_Y=A$ restricted to $H_1(N_Y)$ and $B_Y=B$ restricted to $H_1(N_Y)$ then $B_Y=A_Y^T$. Let $n=\beta(L)=\mathrm{lk}(c\,,\,c^{--})=\mathrm{lk}(c\,,\,c^{-+})$. Then with respect to the above basis for $H_1(N_X\cup N_Y)$, A and B have the following form:

$$A = \begin{bmatrix} A_X & & & \\ & & q_{ij} \\ & A_y & \\ q_{ji} & & n \end{bmatrix}, \qquad B = \begin{bmatrix} A_X & & & \\ & & q_{ij} \\ & A_Y^T & \\ q_{ji} & & n \end{bmatrix}$$

where $q_{ij}=q_{ji}$. A has matrices A_X , A_Y and (n) down the diagonal. Away from these submatrices A has ijth entry designated by q_{ij} . The q_{ij} entries represent linking numbers between nonintersecting curves in N_X and N_Y , thus $q_{ij}=q_{ji}$. B has matrices A_X , A_Y^T and (n) down the diagonal. The q_{ij} entries of B are equal to those of A.

By Cooper's algorithm

$$\begin{split} \Delta(x\,,\,y) &= (x-1)^{-2g} (y-1)^{-2h} \det \, xy \begin{bmatrix} A_X & q_{ij} \\ A_Y & n \end{bmatrix} \\ &+ \begin{bmatrix} A_X^T & q_{ji} \\ A_Y^T & q \end{bmatrix} - x \begin{bmatrix} A_X & q_{ij} \\ A_Y^T & n \end{bmatrix} - y \begin{bmatrix} A_X^T & q_{ij} \\ A_Y & n \end{bmatrix} \\ &= (x-1)^{-2g} (y-1)^{-2h} \\ &\cdot \det \begin{bmatrix} (y-1)(xA_X-A_X^T) & (x-1)(yA_Y-A_Y^T) \\ (x-1)(y-1)q_{ji} & (x-1)(y-1)n \end{bmatrix}. \end{split}$$

Now factor out (x-1) from the first 2g rows and (y-1) from the next 2h rows:

$$= \det \begin{bmatrix} xA_X - A_X^T & \cdots & (x-1)q \\ (y-1)q \cdots yA_Y - A_Y^T & (y-1)q \\ (x-1)(y-1)q & \cdots & (x-1)(y-1)n \end{bmatrix}.$$

Factor our (x-1)(y-1) from the last row:

$$= (x-1)(y-1) \det \begin{bmatrix} xA_X - A_X^T & (x-1)q \\ (y-1)q \cdots y & A_Y - A_Y^T & (y-1)q \\ q & \cdots & n \end{bmatrix}$$
$$= (x-1)(y-1)f(x, y).$$

$$f(1, 1) = \det \begin{bmatrix} A_X - A_X^T & 0 \\ A_Y - A_Y^T & \vdots \\ q & \cdots & q & n \end{bmatrix}$$
$$= \det(A_X - A_X^T) \det(A_Y - A_Y^T) n = \pm n = \pm \beta(L)$$

since $A_X - A_X^T$ and $A_Y - A_Y^T$ are intersection forms on $H_1(N_X)$ and $H_1(N_Y)$ and therefore have determinant ± 1 . \square

4. The
$$\beta_i$$
 invariants

If $L = X \cup Y$ is a link of linking number zero then Cochran has defined a series of integral concordance invariants β_j , where $\beta_0 = \beta$. To define β_j we must first define the notion of derived links of a link.

Definition 4.1 (Cochran [C]). If $L = X \cup Y$ is a link of linking number zero and M_X , M_Y are Seifert surfaces spanning X and Y such that $M_X \cap M_Y = c_1$ where c_1 is an embedded circle, then $L = X \cup c_1$ is a first derived link of L. Link $L_j = X \cup c_j$ is a jth derived link of L if it is a first derived link of $L_{j-1} = X \cup c_{j-1}$. (Note: Each derived link has the same first component.)

Definition 4.2 (Cochran [C]). The β_j invariant of L, j > 0, is equal to the β invariant of a jth derived link of L and $\beta_0 = \beta$.

Theorem 3. Let $L = X \cup Y$ be a link of linking number zero where X is the unknot. Let Σ be the $\mathbb{Z}/2$ cover of S^3 branched over X and Y^0 , Y^1 the two lifts of Y in Σ . Then

(1)
$$-\frac{1}{2}\operatorname{lk}(Y^{0}, Y^{1}) = \sum_{j=0}^{N-1} 4^{j} \beta_{j}(L) - 2 \circ 4^{N-1}\operatorname{lk}(c_{N}^{0}, c_{N}^{1}),$$

where $L_N = X \cup c_N$ is an Nth derived link of L, and c_N^0 , c_N^1 are the two lifts of c_N in Σ .

Corollary 3. $\frac{1}{2}$ lk $(Y^0, Y^1) \equiv \beta(L) \mod 2$.

Proof. This is just line (1) modulo two. \Box

Proof of Theorem 5. Let M_X , M_Y be oriented Seifert surfaces for X and Y such that $M_X \cap M_Y = c_1$ where c_1 is an embedded circle. In Σ , M_Y (cut along c_1) lifts to M_Y^0 and M_Y^1 ; c_1 lifts to c_1^0 and c_1^1 . Now,

$$\partial M_Y^0 = c_1^0 - c_1^1 + Y^0$$
 and $\partial M_Y^1 = c_1^1 - c_1^0 + Y^1$.

Curve c_1 has a neighborhood in M_Y parametrized by $c_1 \times [-1, 1]$. We will choose γ in M_Y to be equal to $c_1 \times -1$ or $c_1 \times 1$. The two lifts of γ will be contained in collar neighborhoods of ∂M_Y^0 and ∂M_Y^1 . Choose γ so that γ^0 , the lift of γ in M_Y^0 , is contained in a neighborhood of c_1^0 in M_Y^0 , then γ^1 , the lift of γ in M_Y will be contained in a neighborhood of c_1^1 in M_Y^1 .

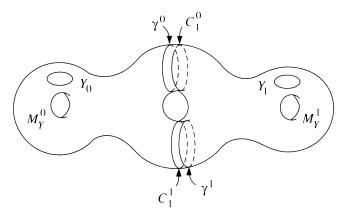


FIGURE 4.1

We would like to compute $\operatorname{lk}(Y^0,Y^1)$. First note that since X is the unknot Σ is homeomorphic to S^3 so the linking number is well defined. In $\Sigma-Y^1$, Y^0 is homologous to $c_1^1-\gamma^0$ and Y^1 is homologous to $c_1^0-\gamma^1$ (see Figure 4.1). So $\operatorname{lk}(Y^0,Y^1)=\operatorname{lk}(\gamma^0-c_1^1,Y^1)$. In $\Sigma-(\gamma^0-c_1^1)$, Y^1 is homologous to $\gamma^1-c_1^0$, so

$$lk(\gamma^{0} - c_{1}^{1}, Y^{1}) = lk(\gamma^{0} - c_{1}^{1}, \gamma^{1} - c_{1}^{0})$$

$$= lk(\gamma^{0}, \gamma^{1}) - lk(\gamma^{0}, c_{1}^{0}) - lk(c_{1}^{1}, \gamma^{1}) + lk(c_{1}^{1}, c_{1}^{0})$$

$$= 2lk(c_{1}^{0}, c_{1}^{1}) - 2lk(\gamma^{0}, c_{1}^{0})$$

since $lk(\gamma^0, \gamma^1) = lk(c_1^0, c_1^1)$ and $lk(\gamma^0, c_1^0) = lk(c_1^1, \gamma^1)$.

We now use a general lifting formula of linking numbers: Let $p\colon \widetilde{W} \to W$ be a covering space projection, and G the group of covering transformations of \widetilde{W} . Assume linking numbers are well defined in W and \widetilde{W} . Let a,b be two closed curves in W. Then $\mathrm{lk}_{W}(a,b) = \sum_{\tau \in G} \mathrm{lk}_{\widetilde{W}}(\tau a,b)$. We have

$$\begin{split} \beta(L) &= \ \mathrm{lk}_{S^3}(c_1\,,\,c_1^+) = \mathrm{lk}_{S^3}(c_1\,,\,\gamma) \\ &= \ \mathrm{lk}(c_1^0\,,\,\gamma^0) + \mathrm{lk}(c_1^0\,,\,\gamma_1) = \mathrm{lk}(c_1^0\,,\,\gamma^0) + \mathrm{lk}(c_1^0\,,\,c_1^1) \,. \end{split}$$

So

$$\begin{split} \operatorname{lk}(\boldsymbol{Y}^{0}, \, \boldsymbol{Y}^{1}) &= 2 \operatorname{lk}(\boldsymbol{c}_{1}^{0}, \, \boldsymbol{c}_{1}^{1}) - 2 \operatorname{lk}(\boldsymbol{\gamma}^{0}, \, \boldsymbol{c}_{1}^{0}) \\ &= 2 \operatorname{lk}(\boldsymbol{c}_{1}^{0}, \, \boldsymbol{c}_{1}^{1}) - 2 \operatorname{lk}(\boldsymbol{\gamma}^{0}, \, \boldsymbol{c}_{1}^{0}) - 2 \operatorname{lk}(\boldsymbol{c}_{1}^{0}, \, \boldsymbol{c}_{1}^{1}) + 2 \operatorname{lk}(\boldsymbol{c}_{1}^{0}, \, \boldsymbol{c}_{1}^{1}) \\ &= 4 \operatorname{lk}(\boldsymbol{c}_{1}^{0}, \, \boldsymbol{c}_{1}^{1}) - 2 [\operatorname{lk}(\boldsymbol{\gamma}^{0}, \, \boldsymbol{c}_{1}^{0}) + \operatorname{lk}(\boldsymbol{c}_{1}^{0}, \, \boldsymbol{c}_{1}^{1})] \\ &= 4 \operatorname{lk}(\boldsymbol{c}_{1}^{0}, \, \boldsymbol{c}_{1}^{1}) - 2 \beta(L) \,, \end{split}$$

and

(2)
$$\operatorname{lk}(Y^{0}, Y^{1}) = -2\beta(L) + 4\operatorname{lk}(c_{1}^{0}, c_{1}^{1}).$$

The above equation is a recursive one. Consider the link $L_1 = X \cup c_1$ a first derived link of L. By (2)

$$lk(c_1^0, c_1^1) = -2\beta_1(L) + 4lk(c_2^0, c_2^1)$$

where $L_2 = X \cup c_2$ is a second derived link of L. Thus,

$$lk(Y^{0}, Y^{1}) = -2\beta(L) + 4[-2\beta_{1}(L) + 4lk(c_{2}^{0}, c_{2}^{1})]$$

= -2\beta(L) - 2 \cdot 4\beta_{1}(L) + 4^{2}lk(c_{1}^{0}, c_{2}^{1}).

In general $\operatorname{lk}(c_j^0,\,c_j^1)=-2\beta_j(L)+4\operatorname{lk}(c_{j+1}^0,\,c_{j+1}^1)$, so we have

$$lk(Y^{0}, Y^{1}) = -2\beta_{0}(L) - 2 \cdot 4\beta_{1}(L) - 2 \cdot 4^{2}\beta_{2}(L) - 2 \cdot 4^{3}\beta_{3}(L) - \dots + 4^{N}lk(c_{N}^{0}, c_{N}^{1})$$

or

$$-\frac{1}{2}\operatorname{lk}(Y^{0}, Y^{1}) = \sum_{i=0}^{N-1} \beta_{j}(L) - 2 \cdot 4^{N-1}\operatorname{lk}(c_{N}^{0}, c_{N}^{1}). \quad \Box$$

REFERENCES

- [A] C. Arf, Untersuchungen über quadratische Formen in Körpern der Charackteristik 2, Crelles Math. J. 183 (1941).
- [C] T. Cochran, Concordance invariants of coefficients of Conway's link polynomial, Invent. Math. 82 (1985), 527-41.
- [Co] D. Cooper, The universal Abelian cover of a link (R. Brown and T. L. Thickstun, eds.), Lecture Notes Ser., vol. 48, London Math. Soc., 1979.
- [KM] M. Kervaire and J. Milnor, Groups of homotopy spheres, Ann. of Math. 77 (1963).
- [L] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. 84 (1966).
- [M] K. Murasugi, On the Arf invariant of links, preprint.
- [R] R. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965).
- [S] R. Sato, Corbodisms of semi-boundary links, preprint.

DEPARTMENT OF DECISION SCIENCES, CONCORDIA UNIVERSITY, 1455 DE MAISONNEUVE BOULE-VARD WEST, MONTREAL, QUEBEC H3G 1M8, CANADA